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Initial Plan 

 

The objective of this project was to design and fabricate a robot capable of sustaining a 

vertical orientation by balancing on only two wheels.  The balancing robot is a highly 

unstable two wheeled robot. The largest mass, the battery pack, is positioned high above 

the axle, making the robot an inverted pendulum with a low natural frequency. The robot 

will naturally tend to tip over, and, the further it tips, the stronger the force causing it to 

tip over. 
 

The original plan was to use a gyroscope and an accelerometer to measure the rate 

of angular rotation and the relative source of gravity; however, these devices are too 

expensive for the project.  Therefore an inexpensive potentiometer was used to measure 

the angle of the robot relative to the floor.  In addition, a microcontroller was used to 

process the data from the sensors, and control the motors accordingly to allow the robot 

to balance.   

Ideally, an Atmel AVR pic microprocessor was to be used to control the robot.  

However, because it must be programmed in C (and since C was never taught to 

mechanical engineers), it was unusable in the allotted time period.  Instead, a Basic 

Stamp 2SX was used to control the robot.  Even though the basic stamp’s processing 

capabilities are far inferior to the Atmel AVR, it could be programmed in basic.  This 

allowed for adequate processing speed and saved vast amounts of time by not having to 

learn a new programming language.  In addition, the motor control algorithm would 

implement PID based closed loop feedback control.  Data acquisition from the 

potentiometer would sent back to the basic stamp and used to determine motor input.   
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Equipment: 

Body:  The structure of the balancing robot was created from disassembled bomb 

disposal robots, and other scrap parts available from Robojackets robotics club. 

 

Powertrain:  A single drive motor powered each wheel of the robot.  These 24 volt 

brushed motors have a 70.3 to 1 planetary gear box to reduce the output shaft speed.  The 

wheels are coupled directly to the output shafts of the gear box.  The speed controller 

used to control the motors is a heavy duty remote control speed controller, Vantec , 

popular for use in personal robotics applications.  The speed controller requires a 

standard RC signal (1.5 to 2 ms pulses). 

 

Microcontroller:  A Parallax brand Basic Stamp 2SX was used to control the robot.  This 

is the same microcontroller used in the controller boxes for ME2110.  The Basic Stamp is 

a very simple microcontroller, and is programmed using Basic.  This results in it being 

simple to program, but a less powerful microcontroller due to it having to interpret Basic 

on the fly. 

 

Speed Controller Communication:  The Basic Stamp microcontroller sends the motor 

speed commands in a serial format to the SSC2.  The SSC2 then converts these signals 

into standard remote control signals (1.5 to 2.0 ms pulses) that can be interpreted by the 

Vantec speed controller. 

 

Power:  Two battery packs are used to power the robot.  One large 24 volt pack is 

connected to the speed controller, and in turn powers the motors.  The other pack is 9.6 

volts, and is used to power the Basic Stamp microcontroller and the SSC2.  This is done 

because the Basic Stamp and SSC2 cannot accept voltages larger than 10 volts. 

 

Position Sensor:  The angular position of the robot relative to gravity is measured by a 

potentiometer with a feeler attached to its dial that senses the position relative to the 

floor.  Therefore the robot must currently be on a level surface to balance properly.  The 

robot has been successfully run on surfaces as rough as sidewalks. 



System Diagram: 
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Figure 2.  System Diagram 

 

Kinematics: 

 

The balancing robot relied on signal feedback from the potentiometer.  For our 

case, a value of 0 indicated that the robot was completely vertical.  From here, three 

different values had to be determined, Proportional, integral and derivative count values. 

 

First, proportional was examined.  This is the value of the current potentiometer 

output, the error term θ  in Figure 3, was multiplied by the P-Gain, converted into motor 

counts and stored.  This gave a motor speed proportional to the error term.   

 

Next, integral term was determined via the summation of error term (ie, the 

summation of all previous potentiometer readings) and multiplied by the I-Gain.  The 

integral term lets the robot know that it has been at an incorrect angle for too long a 
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period of time, and must correct itself before reaching maximum motor velocity.  This 

was converted into motor counts and stored.   

 

The derivative gain was calculated by taking the difference of the current 

potentiometer reading from the previous potentiometer reading,  

 

 ( ) ( ) θd=− error term eviousPrerror termCurrent  (1) 

 

This is the angular rate, the rate at which the robot is falling over or recovering.  Again, 

this was multiplied by D-Gain, converted to motor counts, and stored.   

 

Finally, all gain values that had been converted into motor counts were summed, 

and outputted to the motors.  This process ran in a continual loop, read potentiometer 

value, calculate PID, output motor speed, repeat. 
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Figure 3.  Simple System Dynamics 

 

The proper motor gains and system dynamics can be determined through theory.  

However for the length of this project, it was satisfactory to use trail and error to find the 

correct gains. 

 

The first iteration of the balancing code only used the proportional term, and the 

robot was unable to balance correctly.  Either the gain had to be set too high such that the 

robot oscillated wildly, or the gain was too low such that the robot could not recover.  

There was no point at which the proportional controller properly balanced the robot. 



 

The second iteration of the balancing code used all three terms, PID.  With the 

proper gains, the robot could balance for a maximum of 30 seconds.  It appeared to have 

problems in that it would overshoot its original place on the floor that it was trying to 

maintain.  The overshoot was unstable, and the robot would eventually fall over. 

 

The third iteration of the balancing code used only the P and I terms, as 

determined appropriated by Dr. Sadegh.  The wheels were also replaced with larger 

wheels so that the robot had a faster top speed.  The D term was determined to be 

inherent in the inverse pendulum dynamics for balancing, and therefore unnecessary.  

However when the robot is moving at a certain angle, then the D term is desirable.  This 

was noticeable with the PI control only when the robot was pushed hard in an attempt to 

imbalance it.  It did not sense the large angular rate, and therefore would not move the 

motors quickly enough to recover.  The PI controller worked very well for balancing the 

robot in place.  It was able to balance indefinitely, or until too much random noise was 

generated by the potentiometer and RC circuit. 

 

Challenges/ Solutions: 

 There were several challenges involved in this project.  The first is that the Robix 

kits designated for the projects were not used.  Instead a complete robot was built from 

scratch.  The circuits had to be properly connected together, and some custom circuitry 

work was required.  Also, there was no budget available for the robot, so it was 

constructed from material that was already available. 

 

Although programming a basic stamp is not complicated, programming it for a 

complex task was very challenging.  For starters, the logical test of -1 < 0 would return 

false.  This is because logic in basic is done in binary and doesn’t account for the fact that 

the first bit represents positive or negative.  In addition, basic cannot accurately divide by 

negative numbers for the same reason it can’t test to see if a number is less than zero.  

Also, basic doesn’t allow for floating point numbers, so all values were rounded into 

integer numbers.  So, to combat these problems, much of the programming for the robot 



had to be done in binary.  However, once these challenges were overcome, finding good 

P,I, and D gains was not a problem. 

 

The Basic Stamp 2SX does not have an analog to digital converter.  Therefore, the 

potentiometer cannot simply be connected to the microcontroller.  To read the values 

from the potentiometer, an RC circuit has to be created.  The RC circuit consists of the 

potentiometer as the resistor, and a capacitor.  The basic stamp has a function that sends a 

value of high to the capacitor, charging it, and starts a timer.  The capacitor then 

discharges itself through the resistor and when the pin on the microcontroller goes low, 

the microcontroller stops the timer and measures how much time has passed.  The time 

value is dependent on the resistance of the potentiometer, and therefore the position of 

the feeler attached to the potentiometer dial. 

 

Due to the RC circuit being used, there was a lot of random noise, and the 

precision of the sensor was very low.  Using the debug feature available, the values 

interpreted by the basic stamp from the potentiometer were visible.  These varied enough 

that the robot could be leaned several degrees to either side before there was a noticeable 

change in the angular position.  This is visible when the robot is actively balancing.  It 

tends to balance itself, and then will lean a little until it realizes that it is off balance 

before trying to correct itself to balance again.  This is why it is constantly in motion to 

stay balanced. 

 

The first revision of the robot had 6 inch diameter wheels.  The motors have a lot 

of torque, but only rotate at approximately 100 rpm.  The robot had trouble reacting 

quickly enough due to the slow motor speed.  Since there were no other readily available 

motors, a pair of larger wheels, 12 inch diameter, were mounted.  These made a 

significant difference.  The motor could more easily catch up when the robot was falling, 

and they didn’t have to turn as quickly when balanced. 

 

 

 



Achievements/Results: 

 

After extensive time invested into this project, stability from the two wheel 

vehicle was achieved.  The robot (if properly calibrated) can stand on its own indefinitely 

with no external input.  Figure 1 shows the robot balancing by itself.  However, 

sometimes random noise is generated which causes the robot to become unstable and 

topple.  This is primarily due to the low resolution of the sensor, which could not be 

upgraded due to cost. 

 

Learning Experiences: 

 

This project provided several learning experiences.  First, it turned out to be fairly 

easy to maintain good stability once everything was tuned properly.  This leads us to 

believe that with higher resolution sensors, the proper processor, and with the right 

motors, PID technology can be adapted to various technologies with very high success.  

Any device that uses purely mechanical mass-spring-damper technology (such as a 

suspension system on a car) should be tested to see if it can be replaced with a similar 

electronic control.  Although the cost associated with such an upgrade may be more 

expensive (and still rely on mechanical safeties), its performance would be far superior.   
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Appendix A: Program Code 
' {$STAMP BS2sx} 
' ------------------------------------------------------------------------------ 
' Balancing Robot Program 
' ------------------------------------------------------------------------------ 
' Baud rate Basic Stamp 2SX 
'Baud CON $40F0 
 
' I/O Definitions 
' ------------------------------------------------------------------------------ 
PotCW CON 8  ' clockwise pot input 
PotCCW CON 9 ' counter-clockwise pot input 
' ------------------------------------------------------------------------------ 
 
' Constants 
' ------------------------------------------------------------------------------ 
'Scale RCTIME to 0 - 250 
Scale CON $002C ' BS2sx 
' ------------------------------------------------------------------------------ 
' Variables 
' ------------------------------------------------------------------------------ 
'Setting up initial variables 
 
rcLf VAR Word ' rc reading - left 
'diff VAR Word ' difference between readings 
lastPos VAR Word 'Previous servo position 
zeroPos VAR Word 'zero position 
lsPos VAR Word 'Left motor output 
rsPos VAR Word 'right motor output 
potPos VAR Word 
iState VAR Word 
pTerm VAR Word 
iTerm VAR Word 
dTerm VAR Word 
errorTerm VAR Word 
mGain VAR Word 
'change VAR Word 
 
' ------------------------------------------------------------------------------ 
' Program Code 
' ------------------------------------------------------------------------------ 
'setting values for integral state, last position, and change in position (PID) 
iState=0 
lastPos=0 
'change = 0 
 



'Initialize Potentiometer to Set Zero Value, this sets the Balance Point 
HIGH PotCW ' discharge caps 
HIGH PotCCW 
PAUSE 1 
RCTIME PotCW, 1, rcRt ' read clockwise 
RCTIME PotCCW, 1, rcLf' read counter-clockwise 
rcRT=1350-rcRT 
zeroPos=((rcRT+rcLF)/2)*20  'Potentiometer value 12700 - 14540  Center - 13620 
 
 
'Main Program Loop, where motor control calculations are performed 
Main: 
 
HIGH PotCW         ' discharge caps 
HIGH PotCCW      ' discharge caps  
PAUSE 1 
RCTIME PotCW, 1, rcRt            ' read clockwise 
RCTIME PotCCW, 1, rcLf         ' read counter-clockwise 
rcRT=1350-rcRT 
potPos=((rcRT+rcLF)/2)*20        ' Potentiometer value 12700 - 14540  Center - 13620 
 
'goes to get position, integral and derivative gains 
GOSUB Position   
GOSUB Integral 
GOSUB Derivative 
 
'incrementing integral gain 
'sPos = (potPos) - (lastPos-potPos)+iTerm 
'sPos=802 - (sPos/20)     '802 is an adjustment value to center at 120 (upright) 
 
'setting value for motor gain 
mGain = (pTerm + Iterm) 
 
'checking to see if motor gain is negative 
IF mGain.BIT15 THEN motorNeg 
'if not negative, then adjust positivly 
IF NOT mGain.BIT15 THEN motorAdjustPos 
 
 
Motors: 
mGain = mGain + 130 
GOTO drivemotors 
GOTO Main 
 
motorNeg: 
'inverting mgain to be positive for math calculations 



mGain = -1 * mGain 
'adjusting as a negative value (needed for logical operations) 
GOTO motorAdjustNeg 
 
 
motorAdjustNeg: 
'setting mgain then reverting back to a negative number 
mGain = mGain/55 
'capping motor gain 
IF mGain > 120 THEN capMotorNeg 
mGain = -1*mGain 
GOTO Motors 
 
motorAdjustPos: 
'setting mgain 
mGain = mGain/55 
'capping motor gain 
IF mGain > 120 THEN capMotorPos 
GOTO Motors 
 
capMotorNeg: 
'capping motor gain on negative side 
mGain = -120 
GOTO Motors 
 
capMotorPos: 
'capping motor gain on positive side 
mGain = 120 
GOTO Motors 
 
 
'''''''Functions Used to Find PGain, ErrorTerm, etc''''''''' 
 
Position:  'Position term loop 
'setting error term 
errorTerm = potPos - zeroPos         '13620 is 'centerline' 
'checking if error term is negative 
IF errorTerm.BIT15 THEN errorTermNeg 
'checking if error term is positive 
IF NOT errorTerm.BIT15 THEN errorTermPos 
RETURN 
 
errorTermNeg: 
'working with a negative error term 
errorTerm= -1*errorTerm 
'setting pterm 



pTerm = 10*errorTerm/7 
pTerm = -1 * pTerm 
errorterm = -1*errorTerm 
RETURN 
 
errorTermPos: 
'setting pterm 
pTerm= 10*errorTerm/7 
RETURN 
 
 
'''''''Functions Used to Find iGain, iState, etc''''''''' 
 
Integral:  'Integral term loop 
'incrementing istate (ie, adding in the error term) 
iState=iState+errorTerm 
'checking if istate is negative 
IF iState.BIT15 THEN iStateNeg 
'if not negative, run normal code 
IF NOT iState.BIT15 THEN iStatePos 
RETURN 
 
iStateNeg: 
'invert value for logical operation 
iState = -1*iState 
'adjust the iterm gain 
iTerm= iState/8 
're-invert 
iState = -1*iState 
'invert iTerm 
iTerm = -1*iTerm 
RETURN 
 
iStatePos: 
'normal code, works with positive values 
iTerm=1*iState/8 
RETURN 
 
 
'''''''Functions Used to Find dGain, etc''''''''' 
 
Derivative: 'Derivative term loop 
'finding derivative value 
'diff= (lastPos-potPos) 
'saving last position as current position to be used in next loop 
lastPos=potPos 



'finding the d-term 
dTerm = (errorTerm - (lastPos-potPos)) 
'check if negative 
IF dTerm.BIT15 THEN dTermNeg 
'if not negative, run normal code 
IF NOT dTerm.BIT15 THEN dTermPos 
RETURN 
 
dTermNeg: 
'invert for logical operation 
dTerm= -1*dTerm 
add in d-gain value (in this case, left as one) 
dTerm = dTerm 
're-invert 
dTerm = -1*dTerm 
RETURN 
 
dTermPos: 
'add in d-gain value (in this case, left as one) 
dTerm=dTerm 
RETURN 
 
drivemotors: 
 
motorout: 
 
mgain = 254 - mgain 
 
lsPos=mgain 
rsPos=mgain 
SEROUT 10,$40F0,[255,0,rsPos] 
SEROUT 10,$40F0,[255,1,lsPos] 
'PULSOUT Servo, (750 + sPos) ' move the servo 
PAUSE 20 
 
'used to debug (comment out when running to reduce processor time) 
'DEBUG HOME, "Position: ", SDEC mgain, "    ", SDEC lastPos, "    ", SDEC potPos, "    
", SDEC pTerm, "     ", SDEC iTerm, "   ", SDEC dTerm, "     ", SDEC iState, "        " 
GOTO Main 



Appendix B: Robot Revision Pictures 
 

 
 

   Figure 4: Revision 1             Figure 5: Revision 2 
 
 
 


